Passive BCl Hackathon: Applying Deep Learning to Estimate Mental Workload

Aneta Kartali?, Kosta Jovanovié¢'?, Luka Bojovié!?
'mBrainTrain LLC, Belgrade, Serbia

2University of Belgrade — School of Electrical Engineering, Belgrade, Serbia
Introduction

The great potential of passive brain computer interface (pBCl) lies in the fact that one such system can
unobtrusively monitor neurophysiological signals to estimate objective, real-time information about a person’s
cognitive state [1]. This information can further be utilized to improve both safety and performance of workers
in a number of industries (e.g., production, transportation, aviation, construction etc.). The advancements in
both acquisition equipment and the algorithms for feature extraction, classification, and regression, pave the
path for various pBCl applications. However, many challenges remain [2].

Compared to other neurophysiological measurement techniques, when temporal resolution, unobtrusiveness
and reliable measurements are at stake, electroencephalography (EEG) proves to be advantageous. On the
other hand, advances in the field of machine learning, and deep learning (DL) in particular, and their potential
to process non-stationary data, encouraged the investigation of their application to electrophysiological sig-
nals. The hope that DL could move the limits posed by classical signal processing techniques, primarily lies in
the fact that constructing hand-crafted features can be omitted, and end-to-end learning can be applied. How-
ever, there is still no standardized DL-based procedure for EEG processing and feature extraction, but a number
of attempts to utilize DL to solve BCI problems can be found in the literature [3].

Keeping in mind all the above, we propose a DL approach based on convolutional neural networks (CNN) as a
solution to the problem of estimating mental workload (MWL) using EEG and investigate its capabilities to make
reliable decisions about the difficulty of the task at stake.

Experimental Setup

Task:

15 participants (6 female, average 25 years old) performed the NASA Multi-Attribute Task Battery Il (MATB-II) in
three independent experimental sessions, spaced one week apart from one another. The experimental sessions
included three 5-minute blocks of different difficulty level, presented in a pseudorandom manner. The aim of
different difficulty levels was to induce different cognitive workload levels in participants.

Data acquisition and Preprocessing:

Acquired and preprocessed dataset for the Passive BCl Hackathon [4] is made available in the following format:
61-channel EEG data, sampled with a frequency of 250 Hz and epoched into 2-second non-overlapping
intervals.

Further preprocessing implied standardizing each subject’s data to zero mean and unit standard deviation. For
standardization, the statistics were calculated from the first session of each subject’s data, and then used to
standardize all three sessions’ data from the corresponding subject. As each subject completed 3 sessions of
the task, the first session was always used for training, the second for validation, and the third session was
used for testing the classifier.

Method



In order to classify MWL based on EEG for three task difficulty levels, a CNN illustrated in Figure 1 was em-
ployed. The model architecture consists of 7 convolutional layers, followed by average pooling and a fully con-
nected (FC) layer with softmax activation function for class prediction. The first three convolutional layers (em-
bedding module of the network) have 256 output channels (i.e., convolutional filters) with kernel sizes (5,3,3)
and strides (2,2,1) and the remaining four convolutions (aggregation module) have 128 output channels with
kernel sizes (3,4,5,6) and strides (1,2,2,1). The input to the model is 2 seconds of 61-channel raw EEG data, and
the model performs 1D convolution across time dimension. Dropout, normalization and GELU activation func-
tion are put in between layers. The values of all hyperparameters, including the network depth and size, were
chosen based on extensive grid search. Dropout of 0.25 and group normalization (number of groups equal to
the number of channels) are applied to the embedding module, and a dropout of 0.37 together with layer nor-
malization to the aggregation module. The models were trained for 100 epochs using AdamW optimizer and
Cross Entropy loss function. Learning rate scheduler was applied with 5 epochs linear warmup, followed by co-
sine decay. Initial learning rate was 0.02, reaching a maximum value of 0.05 after warmup, and decaying to
0.0005 in the last training epoch.
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Figure 1. Overview of the model architecture used for MWL classification based on EEG.

By using raw EEG data as an input to the model omits the need for manual feature extraction, therefore
protecting the model from any previous hypotheses about which EEG features contain information of interest
and allowing it to learn feature extraction in a data-driven way. Furthermore, using 1D convolutions enables the
model to perform data processing across time dimension and decide which channels will contribute the most.
This approach does not impose any assumptions regarding the channel locations.

The proposed architecture was trained using the transfer learning approach to training. Namely, the model was
first trained an all-subjects’ data, and then fine-tuned on each subject’s data separately. The following section
investigates the obtained results and makes a comparison with the models trained from scratch. Performance
metric used to report the results is classification accuracy on validation set.

Results and Discussion

The models fine-tuned on each subject’s data separately have the average validation accuracy of (58.362 +
7.404) %. Averaged confusion matrix for these models is shown in Figure 2.
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Figure 2. Averaged confusion matrix for fine-tuned models on each subject’s data.



The proposed training procedure was compared to training on all subjects’ data without fine-tunning and train-
ing on each subject’s data separately, from scratch. We conclude that, on average, the presented approach has
around 7.3% and 5.4% higher validation accuracy, respectively.

The confusion matrix shows that the misclassification most frequently happens between the “Difficult” and
“Medium” class. There also seems to be an overlap between “Medium” and “Easy” classes, but very low
overlap between the “Easy” and “Difficult” classes. This might be due to short evaluation periods — during
those two seconds which are the input to the model, the task might be easier or harder (or perceived that way)
than the overall difficulty of the block the data belongs to. Additionally, the difference in cognitive load induced
by “Medium” and “Difficult” blocks may be smaller than between the “Medium” and “Easy” blocks.

Conclusion

The results indicate that the proposed architecture has the capacity to extract relevant information from EEG to
the extent of generating estimations significantly far from random. Future work will focus on the generalization
capabilities of the model and will consider other DL approaches to efficient information extraction.

Considering that only two seconds of the data are used to make a prediction, having more data to learn from
and consequently making the model generalize well on different subjects, would lead to reliable real-time use.

Finally, making the measurement technology wearable and mobile, together with the improvement of signal
processing using DL, may open the door for larger adoption of EEG technology in industry.
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